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Abstract—This paper aims to establish a post processing
algorithm to estimate the upper limb motion, given a set of mea-
surements from wearable sensors representing the orientation of
the shoulder, upper arm and lower arm. The motivation of the
development is the measurement of the upper limb motion for
subjects with motor impairments, such as post-stroke patients
preventing the use of specific motions for calibration purposes
and allowing the sensors to be relatively insensitive to their
mounting positions. The type of sensors has been left general,
with the experimental validation in this paper carried out using
inertial sensors and magnetic trackers. The method is validated
both numerically and experimentally, and shows improvements
compared to the common inverse kinematics approach, especially
in the practical conditions where sensor mounting alignment is
suboptimal.

I. INTRODUCTION

In the measurement of human body motion, a motion
capture system typically records the spatial positions of a set
of markers attached to a body part or segment acquire data rep-
resenting individual body features (e.g. in the case of RGBD
camera based systems). A kinematic model of the articulation
of the human body is then generally constructed. The joint
motion estimation is therefore the process of obtaining the
values of the joint displacements of the kinematic model from
the marker or feature displacements obtained by the motion
capture system. This can be achieved by performing Inverse
Kinematics (IK) analyses on the obtained motion capture data.
Motion capture and motion estimation have several relevant
applications in modern society. One example is the field of
motor function rehabilitation [2], [3], where joint motion
tracking can help physicians and researchers gain insight into
the mechanisms of body movements or the quantification of
the interaction results with relevant technologies, such as reha-
bilitation robotics [4], [5]. The work in this paper was initially
motivated by clinical needs to assist in the quantification of
patients movements.

Since the 1980s, much research has been conducted on
obtaining and analysing the motion capture data [7], [8], [9],
[10]. The data capture process has been performed using dif-
ferent modalities of measurements: inertial measurement units
(IMUs) [11], magnetic trackers [5] or optical systems [10].
Each mode of measurement has its strengths and challenges to
suit particular applications. IMUs allow the flexibility of being
completely mobile while suffering from relatively high level of

measurement noise and drift. Magnetic trackers are bound in
terms of their workspace but provide high accuracy measure-
ments without drift. Markerless optical systems — e.g. RGBD
cameras — do not require any calibration posture or movement
when coupled with appropriate algorithms but demonstrate
relatively lower reliability and accuracy [12]. Their marker
based counterpart, while capable of high accuracy, suffers from
longer setup and data post-processing time. All optical systems
are also confined to a specific space instrumented with the
cameras and prone to occlusions.

This paper seeks to address the technical challenges arising
from a specific application: namely the assessment of the
motor functionality of subjects suffering from upper limb
motor impairment, such as those caused by stroke. The
condition of the subjects involved in the measurement and
the practicality of the motion capture exercise dictate the
unique requirements from which the joint motion estimation
is constructed. The primary challenge is the difficulty in the
subject performing both voluntary and involuntary movements
which prevents the use of any specific calibration posture.
Furthermore, the process is required to be relatively insensitive
to the sensing units location since subjects may be required to
place the sensors themselves. Joint motion tracking strategies
today generally still rely on calibration processes [11], [13] or
require specific locations for the sensing unit or markers [14],
thus reducing their effectiveness as a practical day to day tool.

The development of accurate, cost-efficient and easy-to-
use joint motion tracking methods is important in the area
of motor rehabilitation [6] where kinematic measurements
of patients are today limited to the clinical context or even
to laboratory settings due to their complexity. Collection of
accurate kinematic data over long periods of time, for example
during a patient’s hospital stay or after their discharge to their
home environment, could provide important information to
researchers and clinical practitioners [2]. This can lead to a
direct benefit in the design of more targeted treatments and
for recovery evaluation.

The method proposed in this paper computes the joint
angular displacement of the kinematic model representing
the upper limb of a subject given a set of motion capture
data. The method can be applied to any modality of motion
capture which provides the sensors orientation at the points
of measurement (e.g. portable IMUs, magnetic trackers). As



TABLE I: Classical Denavit-Hartenberg parameters for the
kinematic model of the upper limb.

i ai αi di θi Description Joint limits
1 0 π/2 0 q1 Plane of elevation [−π, π]
2 0 −π/2 0 q2 Elevation [−π, 0]
3 0 π/2 lua q3 Axial rotation upper arm [−π, π]
4 0 π/2 0 q4 Elbow [ 0, π]
5 0 0 lla q5 Forearm [−π, π]

Fig. 1: Kinematic model of the upper limb, for q =(
−π2 0 0 π

2 0
)T

, with sensor Sa attached to the shoulder,
sensor Sb attached to the upper arm and sensor Sc attached
to the forearm.

such, the outcomes of this paper have the direct potential
of providing joint estimation information to help resolve the
needs identified above.

The rest of this paper is structured as follows. The problem
formulation and limitations of the Inverse Kinematic (IK)
solutions are introduced in Section II. Section III describes
the proposed solution. Results of numerical simulations and of
two practical experiments are presented in Section IV. Finally,
discussions and conclusions are presented in Section V.

II. PROBLEM DEFINITION

In this study, the kinematic model of the subjects upper limb
is considered as a 5 dof serial kinematic chain, articulated by
revolute joints. The generalized coordinates of the joints are
denoted by q ∈ R5×1. Table I provides the Denavit-Hartenberg
parameters [15] of the kinematic model and the associated
clinical terminologies of the joints [16] and their limits. Fig. 1
provides a schematic of the kinematic model.

The first three joints correspond to the spherical joint of
the idealised gleno-humeral (shoulder) joint. The fourth and
fifth joints represent the elbow flexion/extension and prona-
tion/supination, respectively. The model is only derived up to
the forearm — wrist and finger motions are not considered.

In this study, the problem of joint motion estimation is de-
fined as: given the upper limb Forward Kinematics (FK) and its
parameters pc (constant for a given subject), obtain the set of
N joint configurations qn =

(
q1,n . . . q5,n

)T
, 1 ≤ n ≤ N

which minimize the error between the FK of this set of qn
and the orientations of the sensors for these N measurements.

As stated in Section I, the application of joint motion track-
ing to subjects with upper limb motor impairment imposes
certain requirements to the design of a solution. The main
design requirements therefore are that the resulting technique
• requires no calibration posture to be performed by the

wearer
• is insensitive to where the sensor is placed on the shoulder

and along the upper arm and forearm
• demonstrates as much as possible robustness to the mis-

alignment of the sensors.
Moreover it is assumed that the motion capture is performed

using three sensor units: Sensor Sa placed on the shoulder,
sensor Sb attached to the upper arm anywhere above the elbow
and sensor Sc attached to the forearm — as close as possible to
the wrist. Therefore, Sa, Sb and Sc are modelled to be rigidly
attached to links i = 0, 3 and 5 respectively (see Fig. 1). All
sensors provide data with respect to the global frame B.

As the primary objective is to obtain the motion of the upper
limb with respect to the body, the motion of the body trunk,
represented by Frame 0 is not considered in this paper.

The origin of sensor Sa is described with respect to Frame 0
at the shoulder with translational displacements xSa, ySa, zSa
and angular displacements in the form of roll, pitch, and yaw
angles φSa, ψSa, θSa. The displacements would be constant
throughout if the shoulder joint was an ideal spherical joint,
which is not the case in practice. Sensor Sb is rigidly attached
to Link 3, corresponding to the upper arm. The offsets are
given by xSb, ySb, zSb describing translation and roll, pitch,
and yaw angles φSb, ψSb, θSb describing rotation w.r.t. Frame
3. For sensor Sc, the offsets are described with xSc, ySc, zSc
(translation) and roll, pitch, and yaw angles φSc, ψSc, θSc
(rotation), w.r.t. Frame 5. Sensor Sc is rigidly attached to Link
5, which corresponds to the forearm.

The short notation sβ = sin(β) and cβ = cos(β) is used
throughout this paper. For the transformation between two
consecutive links of the kinematic model, the homogeneous
transformation matrix describing the rotation and position of
Frame i w.r.t. Frame i − 1 is denoted by Ti−1

i , as defined
in [15]. Translational offsets are denoted x, y, z and the rota-
tional offsets are expressed as roll, pitch, and yaw angles and
denoted φ, ψ, θ. Arm lengths and offsets of base and sensors,
are constant for a given dataset. These constant parameters are
referred to as pc.

The forward kinematics (FK) of the three sensor frames
w.r.t. the base frame B can be modelled as:

FK(pc,q) =


TB
Sa = TB

0 T0
Sa

TB
Sb = TB

0 T0
1T

1
2T

2
3T

3
Sb

TB
Sc = TB

0 T0
1T

1
2T

2
3T

3
4T

4
5T

5
Sc

(1)



Let Rx
y be the rotational part of a homogeneous transfor-

mation matrix Tx
y , which are the first three rows and columns,

and ijR
x
y be the element of Rx

y on the i’th row and the j’th
column. Let X = cβ , Y = sβ , then atan2(X,Y ) = β.

The conventional IK are based on the assumption that the
sensor frames are aligned with the link frames to which they
are rigidly attached (i.e., R0

Sa = R3
Sb = R5

Sc = I). In this
study, the IK are calculated using rotation matrices RSa

Sb and
RSb
Sc. The rotation matrix of sensor Sb w.r.t. Sa is given by:

RSa
Sb =

(
RB
Sa

)−1
RB
Sb =cq1cq2cq3 − sq1sq3 −cq1sq2 cq3sq1 + cq1cq2sq3

cq1sq3 + cq2cq3sq1 −sq1sq2 cq2sq1sq3 − cq1cq3
cq3sq2 cq2 sq2sq3

 (2)

From (2), the plane of elevation can be estimated with:

q̄1 = atan2(−12R
Sa
Sb ,−22R

Sa
Sb ) = atan2(cq1sq2 , sq1sq2) (3)

Now, using q̄1 and (2), the elevation can be obtained with:

q̄2 = atan2

(
32R

Sa
Sb ,
−12R

Sa
Sb

cq̄1

)
= atan2(cq2 , sq2) (4)

From (2), the axial rotation of the upper arm can be found
with:

q̄3 = atan2(31R
Sa
Sb ,33R

Sa
Sb ) = atan2(cq3sq2 , sq2sq3) (5)

Because of the order of revolute joints in the kinematic model,
there are two solutions for q̄1, q̄2, q̄3. This redundancy is
resolved by ensuring that the joint angles comply with the
assumed joint limits of Table I.

The elbow angle is computed using the vector pointing
along the upper arm (ySb) and the vector pointing along the
forearm (zSc):

q̄4 = atan2 (ySb · zSc, |ySb × zSc|2) = atan2(cq4 , sq4) (6)

For the forearm joint, the following rotation matrix is used:

RSb
Sc =

(
RB
Sb

)−1
RB
Sc =

cq4cq5 −cq4sq5 sq4
cq5sq4 −sq4sq5 −cq4
sq5 cq5 0

 (7)

Using (7), the forearm angle is calculated with:

q̄5 = atan2
(

32R
Sb
Sb,31R

Sb
Sc

)
= atan2(cq5 , sq5) (8)

Note that there is a singularity for sq2 = 0 and that numerical
issues may arise when sq2 ≈ 0 or cq̄1 ≈ 0. The output of the
IK is denoted with q̄ =

(
q̄1 q̄2 q̄3 q̄4 q̄5

)T
.

As mentioned before, the presented IK solution is based on
the assumption that the sensors are aligned with the links of
the kinematic model — or that the misalignment offsets are
known. Due to modelling errors, the shape of human limbs and
the elasticity of the human muscles and skin, the misalignment
is impractical to quantify. To illustrate the effect of applying
the IK with sensor Sa misaligned, numerical simulations
were performed. For every trial, random joint configurations
q∗ were sampled from a uniform distribution, conforming
to the joint limits. Singular positions were discarded with

TABLE II: Percentage of joint estimation errors within the
bounds of sensor offset angles, using the conventional IK
solution.

b = 1◦ b = 5◦ b = 10◦ b = 20◦

q1 77.76% 67.99% 66.12% 65.25%
q2 100% 100% 100% 100%
q3 77.87% 68.32% 66.35% 65.41%

∣∣cq∗1 ∣∣ > 10−4 and sq∗2 < −10−4. The constant rotational
offset of sensor Sa was sampled from a uniform distribution
with four different bounds: b = {1◦, 5◦, 10◦, 20◦} and such
that for every sample

∣∣(φ∗Sa ψ∗Sa θ∗Sa
)∣∣

2
= b. The true

constant parameters are denoted p∗c . Using q∗ and p∗c , the FK
was calculated with (1). Subsequently, q̄ was obtained with
(3), (4), (5), (6) and (8). This was repeated for 105 trials for
every offset. Subsequently, histograms of the error q∗−q̄ were
obtained. The results for the plane of elevation are presented
in Fig. 2a, for the elevation in Fig. 2b, for the axial rotation
of the upper arm in Fig. 2c.

It can be concluded from Fig. 2 that the accuracy of the
estimation of shoulder joint displacements suffers from the
offset and misalignment in sensor Sa when the conventional
IK method is applied, where a small misalignment may cause
large estimation errors. This is particularly true for q1 and
q3, for which a significant portion of the resulting trial errors
was observed to be larger than the sensor offset itself. The
percentages of joint estimation errors that are smaller than or
equal to the bound b of sensor offsets are given in Table II.

III. PROPOSED METHOD

The previously described conventional IK method calcu-
lates q̄n using only measurement n. This study proposes
subsequently using N measurements and N calculated q̄n to
identify the orientation R̂0

Sa of sensor Sa relative to Frame
0 —through the roll, pitch, yaw equivalents φ̂Sa, ψ̂Sa, θ̂Sa.
The data of sensor Sa can now be transformed to R̂B

0 =

RB
Sa

(
R̂0
Sa

)−1

. Calculating the IK again using R̂B
0 ,R

B
Sb,R

B
Sc

results in N values for q̂n. Recall that the IK are based on
the assumption that the sensor frames are aligned with the
link frames to which these sensors are attached — or that
the misalignment offsets are known. Fig. 2 implies that the
resulting joint motion estimation q̂n is more accurate than
q̄n if R̂B

0 better approximates RB
0 , compared to RB

Sa. The
conventional IK solution and the proposed method are depicted
schematically in Fig. 3.

The identification of φ̂Sa, ψ̂Sa, θ̂Sa is achieved by imple-
menting the geometric identification method as described in
[17]. It is given in Algorithm 1. Note that subscript n is added
to matrices to refer to sample n, and subscript k to indicate
iteration k.

In Algorithm 1, the orientation of sensor Sa is referred to
with pk =

(
φSa,k ψSa,k θSa,k

)T
. The angular displace-

ment errors Ω are obtained with f(E), where f() converts a
rotation matrix to roll, pitch and yaw angles. The estimation er-
ror at iteration k is referred to with ∆Xk. Furthermore, let Jk
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Fig. 2: Distribution of error in the conventional IK solution

Fig. 3: Schematic representation of the joint tracking solu-
tions, summarising both the conventional IK solution and the
proposed method.

be the Jacobian at the kth iteration such that ∆Xk = Jk∆pk
relates a small change in the estimated parameters pk to the
corresponding change in Xk.

IV. VALIDATION

For all validations performed, Algorithm 1 was ap-
plied with the following criteria. The while-loop breaks for∣∣∆Xk̂

∣∣
∞ < 3◦ and kmax = 10. Update k̂ if rms(∆Xk) <

rms(∆Xk̂), and δk = 3. Step size αk was chosen s.t.
|αkδpk|2 ≤ 1.

A. Computational set-up

The proposed method was evaluated by numerical simu-
lation in the following way. Joint angles q∗ were sampled
from a uniform distribution within the previously defined joint
limits. Sensor Sa offset was sampled from a uniform distri-
bution such that

∣∣(φ∗Sa ψ∗Sa θ∗Sa
)∣∣

2
= 25◦. The sensors

simulated measurements were calculated with (1). To simulate
the measurement noise, this was subsequently multiplied with
the rotational matrix produced with φ, ψ, θ sampled from a
uniform distribution within ±5◦. This was repeated 50 times to
obtain a set of simulated motion capture data. The initial guess,

Algorithm 1 Identification of φ̂Sa, ψ̂Sa, θ̂Sa
k = 0
k̂ = 0
p0 =

(
0 0 0

)T
while ∆Xk̂ ≥ tolerance and k < kmax do

for n = 1 to N do
(TB

Sa,n,k,T
B
Sb,n,k,T

B
Sc,n,k) = FK(pc,k, q̄) using (1)ESa

n,k

ESb
n,k

ESc
n,k

 =


RB
Sa,n

(
RB
Sa,n,k

)−1

RB
Sb,n

(
RB
Sb,n,k

)−1

RB
Sb,n

(
RB
Sb,n,k

)−1


∆Xn,k =

ΩSa
n,k

ΩSb
n,k

ΩSc
n,k

 =

f(ESa
n,k)

f(ESb
n,k)

f(ESc
n,k)


end for
if ∆Xk < ∆Xk̂ then
k̂ = k
if k̂ = kmax then
kmax = kmax + δk

end if
end if
Calculate Jk
δpk = (JTk Jk)−1JTk ∆Xk

choose step size αk
pk+1 = pk + αkδpk
k = k + 1

end while
return pk=k̂

q̄n, was defined using the IK with pc = 03. The proposed
method was then applied to obtain the offset parameters pk̂
and the joint angles q̂n for all measurements. The error in
identification was defined as p∗c − pk̂. The error in joint
angles for one sample was defined as ên = q∗n − q̂n and
ēn = q∗n − q̄n. This was repeated for 105 different trials.

B. Computational results

In Fig. 4, the boxplots of the errors in the identification
process are given. After identification, the absolute errors of
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sensor Sa orientation, roll, pitch and yaw, were observed to
be below 0.2◦, with mean and median errors below 0.05◦.

Recall that for one trial the joint angle errors are ê = q∗−q̂
and ē = q∗ − q̄. The ratio of rms(ê) and rms(ē) provides
insights into the difference between the conventional method
and the proposed method: a ratio smaller than 1 indicates an
improvement in accuracy. The ratios are given in Fig. 5 for
the three shoulder angles. Note that the distributions of the
presented ratios have a long tail. At the 99th percentile, these
ratios were 0.81, 0.52 and 0.94 for q1, q2 and q3 respectively.

C. Experimental set-up

The proposed method was applied to two different sets
of data. In the first set, a subject was instructed to perform
reaching actions while wearing three magnetic trackers (3D
Guidance trakSTAR system, Ascension Technology Corpora-
tion, USA). In the second dataset, the subject was eating, using
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Fig. 6: Distribution of the estimation errors ε̄ and ε̂

knife and fork, while wearing three IMU based sensors (Opal
sensors, APDM Incorporation, USA). For both datasets, the IK
solutions q̄ were obtained for every sample. All sensor offsets
were initialised to be zero degrees. The proposed method was
used to calculate sensor Sa orientation offsets and then the
joint angles q̂.

For both experiments the estimation errors ε̄ and ε̂ are
defined as the set of the 9×N angular errors — yaw, pitch,
roll for each sensor Sa, Sb, Sc, each sample n — respectively
for the classic IK method and the proposed method.

D. Experimental results

For the first dataset the identification provides the following
offsets: φ̂Sa = −5.1◦, ψ̂Sa = −30.0◦, θ̂Sa = 24.2◦. For
the second dataset, the offsets were φ̂Sa = 14.4◦, ψ̂Sa =
−68.2◦, θ̂Sa = −67.1◦. The distributions of ε̄ and ε̂ are
depicted on Fig. 6. It can be observed that, for both datasets
the distribution of ε̂ is narrower than the distribution of ε̄,
indicating an improved accuracy of the joint motion tracking.
Moreover, it can be observed that for the second experiment
the conventional IK method produces a distribution with two
peaks, around −80◦ and 20◦ whereas the proposed method
produces a zero-centred distribution.

The difference between the two methods d = q̄−q̂ is shown
in Fig. 7 as a function of time. For the first experiment, the
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Fig. 7: Difference d = q̄−q̂ between the common IK solutions
and proposed method as a function of time for the plane of
elevation (d1), elevation (d2) and axial rotation (d3).

five reaching movements of the subject can be recognised by
the spikes at t = 9, 23, 32, 40 and 47 seconds (Fig. 7a). It is
also to note that differences of up to 70◦ can be observed for
the second experiment (Fig. 7b).

V. CONCLUSION

A method combining the conventional IK procedure and
offset identification was proposed to improve accuracy of
upper limb joint motion tracking when calibration postures
cannot be used. The method estimates the orientation offsets
of the shoulder sensor — due to positioning misalignment
— providing a more robust motion estimation method. The
method also does not require any translational displacement
information from the sensor units, relying solely on the
orientation measurement. This allows the sensor units to be
placed anywhere along the upper arm and forearm, as well as
the shoulder, where the orientation on the shoulder is identified
automatically as part of the proposed method.

The proposed solution was applied to both simulated and
measured motion capture data to evaluate its performance.
In over 99% of the simulated cases an improvement in
joint motion tracking accuracy was observed. Experiments,
performed with two different types of sensors, validated the

practical usability and efficiency of the proposed method with
notable improvements in accuracy of joint motion tracking.

The proposed method can be further generalised to identify
orientation offsets of the upper arm and forearm sensors in
order to further increase the accuracy of the motion tracking.
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